
TABLE 2. Values of k and corresponding values of r

k

3
4
5
7
8

8*
11
12
13
15

17
19
20
21
23

24
24*
28
29
31

33
35
37
39
40

40*
41
44
47
51
52
53

r

1
1
2
1
2

1
1
2
2
1

2
2
1
2
1

1
2
2
2
1

2
1
2
1
2

1
2
2
1
2
2
3

k

55
56
56*
57
59

60
61
65
68
69

71
73
76
77
79

83
84
85
87
88*

89
9X
92
93
95

97
101
103
104
104*
105
107

r

1
1
2
2
1

2
2
2
1
2

1
2
2
7
1

1
1
2
1
2

2
3
2
2
1

2
2
1
2
1
2
2

109
111
113
115
116

119
120
120*
124
127

129
131
132
133
136

136*
137
139
140
141

143
145
149
151
152

152*
155
156
157
159
161
164

r

2
1
2
4
1

1
1
2
2
2

2
1
1
2
2

1
2
2
2
2

1
2
2
1
1

9
2
2
2
1
2
1

ft

165
167
168
168*
172

177
179
181
183
184

184*
185
191
193
195

199
201
203
204
205

209
211
212
213
215

217
219
220
221
223
227

r

2
1
2
2
2

2
2
2
1
2

2
2
1
2
2

1
2
2
2
2

2
3
1
6
1

2
2
2
2
2
2

TABLE 3. Values of k and corresponding combinations and
values of r

k

43
67
88
123
148
173
187
188
197

Combination

(l+2-)(l+3-)£(s,x)
(1+2-) (1+3--) (l+5-0£(*,x)
(l+3-)Z(*>x)
(1+2-) (l+5-)Z(*,x)
(1+3-0 (1+5-0 (l+7-0Z(*,x)
(1+2-0 d+3-0 (l+5-0X(s,x)
(1+2-0 (1+3-0 (l+5-0X(s,x)
(l+3-0Z(s,x)
(l+2-0£(*,x)

r

2
3
4
2
3
4
3
3
2
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Forced Oscillations in Nonlinear Systems'
By Mary L. Cartwright

This paper shows how the approximate form of the solutions of a certain nonlinear
differential equation occurring in radio work may be obtained from certain general results
and gives the proof of the general results in detail. The proof of the general statement
depends on a type of method that can be applied with minor modifications to any equation
of the type

x + k f(x)x+g(x)=hp(t),

where p(t) has period 2TT/X, and I p(t)dt is bounded for all t, f(x)>l for \x\ >a, and

g(x)/x> 1 for | x | > a .

For some years Professor J. E. Littlewood and I
have been working on nonlinear differential equa-
tions 2 of a type which occur in radio work and
elsewhere. One of the most interesting of these
equations is

x=Jc(l — — bk\ cos (\t+a), (1)

especially for k large and 0<6<2/3. Our attention
was drawn to it by a remark of van der Pol,3 which

1 This paper contains material presented in lecture form to the staff of the
Institute for Numerical Analysis of the National Bureau of Standards on January
28, 1949. Miss Cartwright was a consultant at the INA at the time this lecture
was delivered.

2 See M. L. Cartwright and J. E. Littlewood, J. London Math. Soc. 20, 180-
189 (1945), and Ann. Math. 48, 472-494 (1947); also M. L. Cartwright, J. Inst.
Elec. Eng. (Radio Section) 95 (III), 88-96 (1948, and Proc. Cambridge Phil. Soc.
45,495 (1949).

3 B. van der Pol, Proc. Inst. Radio Eng. 22, 1051-1086 (1934).

suggested that it corresponded to a physical system
investigated by him and van der Mark.4 For
certain values of the parameters the physical system
had two possible stable oscillations, one of period
4:7iir/\ and one of period (2n + l)27r/X. As a matter
of fact in the case of (1), owing to the strictly
symmetrical nonlinear function 1—x2, the period
Amr/X does not occur, but for certain values of b there
are two stable oscillations of periods (2n ±- 1)2TT/X.

It would take too long to give a complete proof
of this statement here, but I propose to show how
the approximate form of the solutions may be
obtained from certain very general results, and give
the proof of the general results in detail. The proof

* B. van der Pol and J. van der Mark, Nature 120, 333-364 (1927)
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of the general statement depends on the type of
method which we use throughout. It can be
applied with minor modifications to any equation
of the form

x+kf(x)x+g(x) = (2)

where p(t) has period 2TT/X, and I p(t)dt is bounded
Jo

\x\>a,
l

for all t, f(x)>l for |z |>a, and g(x)/x>l for \ \ ,
provided of course that / , g, p satisfy the usual con-
ditions required for the existence and uniqueness of
solutions, and are either independent of k or satisfy
certain simple inequalities independent of k.

We assume throughout that k>l, and usually
that it is large. We first observe that the a in (1)
is merely inserted for convenience. It enables us to
choose the origin of t as we wish. We shall write
x01x0 for the values of x and x at t=0.

There are two main weapons of attack besides the
equation (1) itself. The first is the integrated equation

(3)= bk [sin (\t + a) — sin a];

the second is the energy equation which is obtained
by multiplying (1) by 2x and integrating,

±2-x2
0 + 2k f' (x2-l)x2dt+x2-

Jo

= 2bk\ I x cos (\t + a)dt.
Jo

r2
Xo

(4)

In some ways the integrated equation is more
fundamental than (1), and that is why the X is
inserted on the righthand side of (1). The energy
equation may be rewritten with x=y, xo=yo in the
form

x2+y2-(xl+yl)

= 2k\ P b\x cos (\t+a)-(x2-l)x2\dt. (4')
(Jo )

The righthand side of (4') will be dominated by the
term x2x2 when x is large unless x is then very small,
and it seems improbable that x can be small for
most of the time that x is large. This suggests that
x2+y2 decreases rapidly over any arc for which x is
large, and therefore that x is bounded for sufficiently
large t. The general result which I propose to prove
later is the following:

Theorem 1: Ifx=x(t,xo,xo) is any solution oj (1)
for which x=xo,x=xo when t=0, then

x\<B,\x\<Bk, (5)

where B is a constant independent of k and t, for k>l,
t>to(xo,xo).

Assuming for the moment the result of theorem 1,
we may argue as follows: eq 3 can be rearranged in
the form

-~jrft xdt, (3')

where C is a constant depending on xo,xo,b and a,
and in virtue of (5) the last term is 0(1/k) for large
values of k and 0</<2TT/X. Hence there are two
extreme possibilities: either x is comparable with k
in magnitude, or x is given approximately by the
equation x=X, where

^^—X=b sin (\t+a
o

(6)

Both these possibilities may occur for arbitrarily
large values of t, and also of course there are transi-
tions from one to the other. For fixed t and b and
C such that (—2/3)<6 sin (Xf+a) + <7<2/3, eq 6 has
three roots,

X1<-l<X2<l<Xz=X3(t,C)J

as may be seen from figure 1. If b>2/3 ,
b sin (X£+«) + (7runs outside the interval [—2/3, 2/3]
for some t in each period; we suppose that 0<6<2/3
because this is the most interesting range. It may
be observed from figure 1 that if X\ and Xz increase
with t, X2 decreases and vice-versa, so the solutions
over 0<^<2TT/X are approximately as shown in
figure 2, provided that \x\<B. *

If we integrate over a second period 2ir/\<t<4:T/
X, we have (3r) with C in place of C where

1 /MTT/X 1 riir/\

C'=C~ xdt=C-r
kj2,/\ &J2WX

Hence if \x\ <J5, the solution is given approximately
by Xs(t}&) over the next period. The difference
Cf — C is actually of the same order as x/k, which
occurs in the error term in (3'), but it can be shown
that in the circumstances considered x is of the form
xa(UG) + 0(k-y>). Putting this and x=X9(t,C) +O(k~l)
in (3'), and remembering that Xs and xs are periodic,
we see than the nonperiodic error is

FIGURE 1.
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- I

FIGURE 2.

and so the second wave will certainly be lower than
the first in the case of Xz by an amount of order 1/k,
and the solution will perform descending waves as
shown in figure 3. The second wave will be higher
than the first in the case of Xi, and higher or lower
for X2, unless

pr/X

Jo X2(t,C)dt=0

(so that C' — C approximately). This can only
occur for (?=0, and then we have a solution with
period 2TT/X approximately. There is in fact a
strictly periodic solution with period 2TT/X which is,
for reasons which we shall give presently, unstable.

Returning to the case in which \x\ is comparable
with k in magnitude, we suppose first that #>5fc,
where 5>0 for a time of length D/k. Then x changes
by at least D8, and this is excluded by (5) if D8 >2JB.
Similarly x is not less than —8k for an interval of
time greater than D/k, for if it is x runs outside the
strip \x\<CB.

As regards the transitions, if |1—#2|>S>0 and \x
is large, the second term in (1) is much more im-
portant than x or 6 k\ cos(\t+a), and so x has
the same sign as x in |x |<l — 8 and the opposite if
| E | > 1 + 5, (provided that \x\ is large and k is large).
Hence any small but significant deviation from Xx
or Xz is at once corrected, whereas a small but signi-
cant deviation from X2 causes \x\ to increase rapidly.
In the latter case \x\ cannot decrease again until x ap-
proaches either the Xx or Xz curve which corresponds.

Finally near x=±l the term bk\ cos (XZ+a) dom-
inates except when \t+a is near rnr+1/2w. The dips
of X3 towards x=l and crests of Xx toward x= — l
do in fact occur in these intervals, and a complete
theory of the behavior of solutions near these points
is very complicated. However, in spite of that we

can now form a fairly good general picture of the
behavior of solutions. They settle above x=l into
a long descent in waves of the form x=Xz (t,C) ap-
proximately, dipping a little lower each time until
they reach the neighborhood of x=l. There they
have three alternatives: (1) another wave x=Xs
just above x=l, (2) an unstable wave x=X2 just
below x=l, or (3) a rush down to the corresponding
Xi which, as may be seen from figure 1, is near
x=— 2. The stable oscillations naturally follow
the first or third alternative, and have period
(2W+1)2TT/\ or (2n—l)2w/\ according as they have
n+1/2 or Ti—1/2 waves above x=l. Separating
them there are many types of unstable motion fol-
lowing an X2 curve which begins and ends ona;=l for
part or the whole of the way (or a similar X2 curve
after a long ascent near x= — l). From an X2 curve
they may pull up sharply to X\ or rush down to X3
at any stage. All types starting near x=l finally
plunge down to the Xx curve, and perform a cor-
responding long ascent to x= — l, the whole pheno-
menon for #<0 corresponding to that for x>0. All
this can be rigorously established, and moreover the
relative positions of solutions approximating to
Xz(tyCi) and Xz(t,C2) remain the same throughout a
long descent unless d and C2 differ by something
which is extremely small for large k, such as e~k .

We now return to the proof of theorem 1. The
preceding analysis depended to a large extent on the
fact that 1—x2 changes sign twice; in the work which
follows the significant point is that the coefficient
of x is positive for large x and that the function g(x)
in (2) has the sign of x. Physicists may consider
it intuitive that a system with a restoring force and
positive damping for large x should have bounded
solutions, and I hope to show that this is also intui-
tive by mathematical commonsense. Incidentally
the lemmas give a good deal of other information
about the solutions. I shall as usual refer to t as
the time, and say that tx is before or after t2 according
as tx<Ct2 or t{^>t2. The constants B are independent
of k and ty and are not necessarily the same in each
place unless a suffix is attached, and, as we said
earlier k^>l.

We first ensure that all solutions eventually come
fairly near x=0.

Lemma 1. A solution of (1) cannot have absolute
value greater than 3V2 for all large t.

.Suppose that this is not so, and that x> 3y* fort>ti.
Integrating from ti where x=xiy x=Xi, we have

( x3 x3 \ Ct

-~—x-~\-Xi)+ xdt=bk[sin(\t+a)—sin a],

and so

as t—> °°, where the constant implied depends on k.
The lefthand side tends to oo, and so z—>— <», but
this implies that x->— °°, which contradicts x>3*.
Hence x<SVz for arbitrarily large t, and similarly
x> — 3H for some large t.
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We next establish that as long as \x\ is not too large
the value of |x| cannot increase too much.

Lemma 2. / / < 3 H on an arc PQ, then

\±Q\<\±P\+B1k,

and, if the arc lasts a time longer than 4//:<4J |x<? |<2.
More generally if \x\<b0 on an arc PQ, then

If |zj<3H and £>/: on an arc, it can only last a
time at most 2.3H/fc<4/&. For if it lasts longer, the
solution travels a distance more than 2.3^ and there-
fore cannot remain in the strip. The same is true if
#<—k on an arc in|a;|<3H.

Let Pi be the last point before Q at which \x\ < k,
or P itself, whichever is the latest. Suppose first
that xPl^>0y then #>0 on the arc PiQ. For, if not,
£=0 at some point of PtQ and Px is not the last point
at which |£|<fc. By the integrated equation, since

rt
xQ—xP <Bik— I xdt<Bxk,

Jti

where BX>1 depends on b, which gives the result.
Similarly if xP <^0, we have xp — XQ< BJC. If the time
is greater than ^k,\xPl\<k, and we have the second
form of the result. The result for \x\ < b0 follows by
the same method.

The next two lemmas show that the height of an
arc QR outside the strip |a?|<3*, and the time taken
to describe it are bounded by numbers depending on
xQ; in other words the velocity with which it emerges
from the strip.

Lemma 3. If the arc QR lies above x=3y* and
begins at Q on x = 3Vz, the greatest height h satisfies

When x = h = 3V2jrhi,x=0. Integrating from the
point Q to the point H at which x = h, we have

(x2-l)dx

X— I xdt-\-bk[sm(\t + a) — sin a].

Jo

Since x2—1>2 on QR,

0<xQ-2khl+Bk

and the result follows for hi and so for h.
Lemma 4. If QR is an arc above x=3H beginning

Suppose that xQ^>k, and that R is on x=3H so
that xQ=xR=3H. On QR it is easy to see that

x<xQ+Bk— fxdt
Jo

because xQ^>k. Also

rt 3M
0 = xB— XQ= I xdt<CBxQt—— t2.

and so t<^B3±Q.
The reduction in energy over any sufficiently high

arc is established in lemma 5 which gives effect to
the remarks we made about (4')- It is much the
most difficult part of the proof.

Lemma 5. If QR is an arc above x=3H beginning
at Q on x=3H and ending at R on x=-=3H, for a given
Bi>l there exists a 5 4 > 5 i > 1 such that if xQ>BJc,

The energy eq 4 for the arc QR is

_tfQ==-2k r (x2-\)x2dt+2bk\ Cx sin (\t+a)dt.
Jo Jo

J=k I % (x2-l)x2dt>k r±2dt
Jo Jo

rt

\x\dt
Jo

(8)

Then

<-2J+Bkt*(r\&\2diy

by Cauchy's inequality. So by lemma 4 and (8)

provided that J>BlkxQ, where B5 depends on B3 and
xQ>k. We may obviously choose 22?>4J5i, and we
have the result except for the case in which
J<BU

Suppose now that J<CB2
5 kxQ, and integrate from

Q until » = - xQ or x = 2B2
5 + 3*, whichever comes

first.
this arc and

Hence x is increasing on

a t Q o n x = 8 * , t h e n t h e t i m e t t a k e n to d e s c r i b e Q R i s C l . / w . , . ,. f . ,. . . \ j ^, , 7 T> . - 7 , . . . ^ 7 sin (\t+a)xdt= sin (\t+a)dx<
less than BzxQi provided that xQj>k. Jo Jz*
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Hence

x2—x?Q = — 2k f (x2— l)x2dt—kb\ \ sin(\t+a)dx— B
Jo Jo
>-2J-kBB\-B

>-2kB2
5±Q-kB>-^x2

Q,

provided that XQ^kB^. It follows that x2y> —x2
Q and

therefore x^>—xQ, so that x reaches 2B%-\-Zy* first.

Now since x2— 1 > 2 on the arc,

J>2k P* 5 ^ \x\dx>kxQ-2B2,

and we have a contradiction. Hence the result of
the lemma is true.

It remains to combine the results of lemmas 2
and 5.

Lemma 6. If Q is a point on x=3y* such that
XQ^BJC^O, then the solution returns to the strip
\x\<3* at R and emerges again at S with \xs\<C\xQ\

By lemma 2 with R and S in place of P and Q

\xs\
2<\xR\2+2Blk\xR\+B2

1k
2.

2

Using lemma 5 in the form stated and also in the
k f ! | | | h

- I

- 2

we have
g

weaker form

= {\xQ\-Bxk)2,

From which the result follows. For
We now have the result stated in theorem 1. For

by lemma 1 the solution must enter the strip
Jx|<3K, and by the second part of lemma 2 \x\<Biky
if it stays there. If on the other hand it emerges
at Q with \xQ\<BJc, the height (or depth) of the
subsequent arc outside the strip is less than B4+B2.
For by symmetry all the lemmas for x— > 3 ^ have
strictly corresponding forms for x < — 3H . But by
lemma 6 if \XQ\^>BJC, the solution emerges the next
time at S with \xs\<C]xQ\—Bik, so that it must either
stay in the strip or emerge eventually with
and then by the second part of lemma 2, \x
for all subsequent t.

xQ\<BJc,
BB

- . *

FIGURE 4.

3 *
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